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Abstract - Recent advances in micro electro- 
mechanical systems technology, digital electronics, and 
wireless communications have enabled development of 
low-cost, low-power, multifunctional miniature smart 
sensors. These sensors can be deployed throughout a 
region in an aerospace vehicle to build a network for 
measurement, detection and surveillance applications. 
Event detection using such centralized sensor networks 
is often regarded as one of the most promising health 
management technologies in aerospace applications 
where timely detection of local anomalies has a great 
impact on the safety of the mission. In this paper, we 
propese-to-conduct- a-~l~!it~tLt;_ve-comp~so~ .oofseveraL 
local event detection algorithms for centralized 
redundant sensor networks. The algorithms are 
compared with respect to their ability to locate and 
evaluate an event in the presence of noise and sensor 
failures for various node geometries and densities. 
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I. INTROCUTION 

The primary purpose of Integrated Vehicle Health 
Management (IVHM) is to increase safety and 
reliability of a mission-critical engineering system 
( e g ,  an aerospace vehicle) while simultaneously 
reducing its maintenance costs. This is often 
accomplished via an onboard event detection engine 
that identifies system degradation or failures and takes 
appropriate mitigating steps accordingly [l, 2, 3,  41. 
Event detection is one of the most promising 

applications of sensor networks where a large number 
of networked nodes are used to identify regions 
experiencing some particular phenomenon. While 
researchers have developed a variety of event detection 
techniques, the relative performance and robustness of 
such techniques seems to be largely unknown. 

Therefore, in this paper, we aim to devise an 
objective framework for comparison of different 
centralized network event detection algorithms. We 
will investigate a variety of algorithms - ranging from 
computationally-complex techniques such as Mote- 
FVF (Fuzzy Validation and Fusion) algorithm [6,7] to 
s i m p l ~ ~ r - ~ ~ ~ h - a s - ~ ~ ~ ~ ~ ~ i ~ i n g - ~ n ~ e ~ ~ . ~  ation;- 
Polynomial Regression, and the Distributed Gaussian 
Method - and benchmark their ability to detect and 
locate local events, from the mass of sensors readings 
in an efficient and robust manner. These algorithms use 
the correlation between the sensors readings to ensure 
robustness (no model of the system is used) and can be 
applied to all types of dense networks. 

II. APPROACH 

The benchmark sensor network used in this paper is 
sensing the surface temperature of an aluminum plate. 
The local event is defined as a local rise of the 
temperature and is referred to as a hot spot. The 
algorithms’ performances depend on the hot-spot 
location, the nodes repartition and their density. In 
order to take into account these factors, we consider 
four different network configurations (quadrants, 
triangles, random, semi-random) as illustrated Fig. 1, 



with a number of nodes of 16, 36, 64 and 100. In the 
semi-random configuration, the region is divided into 
small parts with the same number of nodes in each part 
to ensure a better coverage. 

Quadrants Triangles Random Semi-Random 
Fig. 1 Network Geometries 

10 cases are generated with different hot-spot 
locations. Fig. 2 represents the case of a network with 
6x6 nodes placed in quadrant. 

____ __-__ - _____ 

display has been developed to visualize the principal 
characteristics of algorithms. The display, shown in Fig 
3 at the end of the paper, is executed for each different 
case/algorithm to show the shape of the temperature 
field estimated by the algorithm. We will then measure 
the robustness of these algorithms by varying the peak 
locations and the peak values under noise and under 
failures. In the end, the studied algorithms are graded 
for their performance/robustness in detection the peak 
location and the peak values and absorbing variations 
in the peak location and faulty sensor readings. 

111. ALGORITHMS __  - _ _  

A. Model Fitting Interpolation 

Fig. 2. Sensors Placement and Temperature Repartition in the Plate 

A. What to Compare? 

This paper studies the ability of the algorithms to 
-__  locate precisely the temperature peak and to Pive a fair 
estimation of the peak value in the cases of noisy nodes 
and nodes failures. In order to compare the robustness 
of the algorithm, two cases are considered: 

In the first one, a zt2.5% and zt5% normally 
distributed noise is introduced within the readings. The 
mean value of the peak location, the standard deviation 
of the location, the mean peak value and its standard 
deviation are compared. 

In the second case, one or two failing sensor are 
introduced in the network (with a node value 10% and 
15% higher or lower from the normal value) and the 
peak location and value compared with the ideal case. 

B. How to Compare? 

In order to evaluate all the different cases and 
synthesize all the results in a consistent way, we use a 
qualitative analysis. To assist in this approach, a 

The method used here for the interpolation is the 
bicubic technique. It is one of the most common 
interpolation methods in two dimensions. With this 
method, the value of the function f(x, y) at a point (x, 
y) is computed as a weighted average of the nearest 
sixteen nodes. It is composed of two basic cubic 
interpolations put together, one for each plane 
direction. The interpolation is calculated with the Eq. 1. 

The coefficients ag are computed by Matlab and 
depend on the interpolated data source properties. 

_. . - - - - -. 
B. Polynomial Regression 

The polynomial used for the hot spot regression is a 
4rth with the shape shown by Eq. 2: 

4 4  

l=O J=l 

The coefficients p,, are computhd by Matlab using the 
least square method in order to minimize the Eq. 3 at 
the nodes. 

Where ?(x,,y,) represents the real value of the 

temperature at the ith node and T(x,,y,) the value 
given by the interpolation. 

C. Distributed Gaussian Method 



The idea of this method is to generate a Gaussian 
curve centered on each node and to do a normalized 
summation of all of them and then find the maximum 
to detect the Temperature peak. The Gaussian curve 
centered on the node is given by Eq. 4. 

where E is the standard deviation of the distribution and 
can be tuned depending on the application. 
In order to reduce the geometric effect of the node 
placement, the summation of the Gaussian function 
have to be normalized -_ as . shown - _ - _  in Eq. 5. 
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D. Mote Fuzzy Validation and Fusion ivfethod 
(mote38  

The Mote Fuzzy Validation and Fusion algorithm [6] 
was developed for wireless sensors network. It is able 
to distinguish between sensor failure and from 
environment abnormal behavior and to extract the 
relevant information from the mass of data of the 
sensor network. Methods for sensor validation and 
fusion based on fuzzy logic are unique as they do not 
require a mathematical model of the system. This 
algorithm-uses-the-redundancy- of the- -network to 
compensate the lack of reliability. 

The network takes some redundant sensor readings 
and makes them go through three major steps: 
validation, fusion and prediction to come up with one 
single robust value. So far, this algorithm has been 
applied only to uniform fields where the hsion was 
done with all the sensors. In order to apply it to a non- 
uniform field (hot spot) the fusion is done locally 
between few sensors located in restricted areas where 
the field can be assumed uniform [7]. For this 
application, one local fused value is generated by 3 or 4 
sensor values as illustrate Fig. 4. 

Nmio 3 Nodo4 Mods 3 Node 4 

Fig. 4. Fused Local Values for (a) Quadrant Repartition 
(b) Triangle Repartition 

The validation part of the algorithm first filters 
obvious failures based on sensors physical limitation. 
Then it finds the medium of all the readings by a 
majority voting system and finally generates a dynamic 
validation curve in order to assign a confidence value 
0, €[O 11 to the readings x, . The center of the 
validation curve, where cr = 1, is a balance between the 
medium of the values and a prediction part. The fusion 
Eq. 6 consists of a weighted average-$thth-y+Iues and 
their confidence values with include a fraction of the 
predicted value 2 to prevent the system fi-om 
becoming unstable: 

The prediction part is an exponential weighted moving 
average time series predicting method. Finally, the 
robust fused values obtained at the end of the process 
are interpolated to have the shape of the temperature 
field. 

IV. COWARTSON METHODOLOGY 

In order to explain the method used to compare 
different algorithms for different cases, this section 
focuses on the study of one particular network 
configuration, quadrant repartition with 6x6 nodes. By 
processing the algorithms for 10 different hot spot 
location, it appears that the behaviors of the algorithms 
are a combination of 3 basic ones represented in Fig. 5. 

6 2 )  middle o f  two nodes. 6 3 )  centered in one node 

Fig.’S. Basic Hot Spot Location 

By devising several metrics to measure 
performance/robustness in various cases, we have 
graded the algorithms from 5 for good to 0 for poor. 
Afterwards, the values of the different cases are 
summed to provide a global comparison. A summary of 
the results is presented Table 1 & 2 at the end of the 
paper (Appendix I). 

IV. RESULTS 



The same comparison methodology is applied to 
several different network designs. 

5%noise 

A. Noise 

4.1% 0.7% 1.3% 1.5% 

The results of the comparison in the presence of 
noise are presented in the form of a matrix of charts, 
Fig. 6 (Appendix I). Each line represents a different 
configuration and each column a different algorithm. 
Each plot of the matrix represents the performance 
parameters with the number of nodes in the network. 
Tne ‘blue- line is-peak-value-performance;-the red one is 
the standard deviation of the peak location and the 
black line represents the location performances. The 
random repartition is not presented here as its 
performances are really low. 

Interplation Regression Gaussian Mote-fbf 

, The variation of the peak value due to the noise is not 
represented in the matrix. It appears that this parameter 
is fairly independent of the geometry and the density of 
the network. The effect of a 5% noise on the variation 
of the peak value is presented Table 3. 

Peak 
Location 

Peak Value 

Failure 
Outside . I- 

Table 3. Variation of the Peak Value due to a 5% Noise 
IInterpolation I Regression 1 Gaussian I Mote-fvf] 

0 12 12 15 

0 11 11 15 
--___.-__-- --- 

B. Sensor Failure 
-- - - . _ _  .__ -. 

The effect of the failures depends a lot of their 
location. The results presented in the Table 4 are 
divided into two parts whether if the failure is inside or 
out side of the hot spot. The values presented in the 
table are not the absolute performance of the algorithm 
but are relative to the ideal case without failure. The 
geometry of the network and the density do not 
influence these values. 

V. OBSERVATIONS 

As expected, increasing the number of nodes in the 
network increases the performances of the algorithms. 
Also, as it was supposed, the geometry of the network 
changes the performances. A good repartition of the 
nodes through the all area gives much better results 
than a random or a semi-random placement. The 
difference between the quadrant and triangle reparation 
is just sensible for the mote-fif. 

In the case of a noisy environment without sensor 
failure, a simple interpolation gives fairly good results 
while-the-regression-and Gaussiax-algorithm have some 
difficulties to estimate the value of the peak. 

With respect to fault tolerance of various algorithms, 
the mote-fvf algorithm is the most robust. This 
algorithm can handle a large number of failures. 
Moreover, the Mote-fif perfoms robustly regardless 
of where the faulty sensor is located whereas other 
algorithms’ performances depend on the location of the 
fault. 

VI. RECOMMANDATIONS 

If the probability of a faulty sensor is negligible, one 
may choose to use Model Fitting Interpolation (low 
computational complexity). The shape of the 
interpolation fbnction can be modified to better fit the 
application. But this method is very sensitive to sensor 

faults ,Th-e--pr_es-ence _of -a faulty siensQr E ~ I .  _cause a 
wrong diagnosis. 

In the presence of faults, Mote Fuzzy Validation and 
Fusion algorithm is the most robust algorithm to use. 
The price of this robustness is an increase in the 
computation time by a factor of 8 to 16. The mote-fvf 
works the best in a triangular geometry. Nevertheless if 
the probability of failure is very high, quadrant 
repartition can be used to increase the robustness as the 
algorithm by fusing the value of 4 nodes. 
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Fig. 3. Plots Format used to Compare the Algorithms 

Table I. Comparison of the Algorithms Hot Spot Location Detections 

gression noise 



fault 3 

Mote-fvf noise 5 3 
fault 5 

Interpolation Regression Gaussian Mote-fif 
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2 2 1 3 2 
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4 5 4 5 4 
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Fig. 6: Comparison of Hot Spot Detection Algorithm Under Noise 


